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Hello, my name is...

@ DusSan Sovil]
@ ...and | have a problem with zooplankton

@ Aalto University School of Science, Department of
Information and Computer Science

@ Research focus on machine learning
time series prediction
variable selection
@ http://users.ics.tkk.fi/dusans/
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http://users.ics.tkk.fi/dusans/

My focus under AMBER

@ Zooplankton prediction (acartia, temora, pseudocalanus,...)
@ ... taken as time series problem

@ Using machine learning methods and models for the job
(neural networks the most famous)

@ Idea in a nutshell:

Given some measurements/samples/datapoints in
(input,output) format, predict the value of the output for
some new input samples
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My focus under AMBER

@ Zooplankton prediction (acartia, temora, pseudocalanus,...)

@ ... taken as time series problem

@ Using machine learning methods and models for the job
(neural networks the most famous)

@ |dea in a nutshell:

Given some measurements/samples/datapoints in
(input,output) format, predict the value of the output for
some new input samples

@ In the zooplankton prediction, the input is the climate
index/indices (AO/NAQ/BSI), while the output is the
zooplankton abundance

@ Focus on spring values of the species

the “easier” of the tasks
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Assumptions & results discussion

@ Looking from machine learning perspective — accuracy
@ Taking into account the goal of the problem (Cl — ZP):

e modeling restriction
e one form of assumption

@ Preprocessing the time series (yes/no?)
e other assumptions taken as “truth”
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Results — time period influence
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Results — additional assumptions about problem
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Goal in different fields

@ What is the goal of prediction?

e Machine learning — accuracy (minimize loss function)
e Oceanography/Biology — accuracy + interpretability
(plausibility constraints)

@ What is interpretability?
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Goal in different fields

@ What is the goal of prediction?

e Machine learning — accuracy (minimize loss function)
e Oceanography/Biology — accuracy + interpretability
(plausibility constraints)

@ What is interpretability?
@ A priori knowledge is too important to be neglected

@ Constraints in mathematical terms can be incorporated
into a loss function

Dusan Sovilj machine learning approach



Goal in different fields

@ What is the goal of prediction?

e Machine learning — accuracy (minimize loss function)
e Oceanography/Biology — accuracy + interpretability
(plausibility constraints)

@ What is interpretability?
@ A priori knowledge is too important to be neglected

@ Constraints in mathematical terms can be incorporated
into a loss function

@ Constraints can be directly specified into the model, or
inferred from the data (in this case we have interpretability)

@ Constraints == model structure (i.e. assumptions about the
problem)
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@ Include as much information as possible
— domain knowledge

@ Runoff, temperature, salinity, ...

@ Probabilistic graphical models (Bayesian networks) —
assumptions specified directly into the model
(relationships)
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Other things
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@ Some species cannot be predicted at all
— is this completely independent from others?

@ Samples, samples, samples (I want more)

@ Imagine fixed number of points in increasingly higher
dimensions/factors
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